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Abstract
Ice Ic, so-called ‘cubic ice’ (König 1943 Z. Kristallogr. 105 279–86), can be obtained, for
example, from direct vapour deposition at low temperatures or by warming of recovered
high-pressure forms of ice. It is usually obtained in the form of very small crystallites, leading
to particle size broadening of the diffraction pattern. This pattern also contains features
incompatible with a well-crystallized cubic structure, the details of which depend on the parent
phase and the prevailing temperature. We have now corroborated an earlier suggestion
(Kuhs et al 1987 J. Physique C1 48 631–6) that an important number of so-called deformation
stacking faults exist in cubic ice and propose a model for a quantitative description of stacking
faults and anisotropic particle size broadening in ice Ic suitable for profile refinements of its
complex diffraction patterns.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Ice Ic, so-called ‘cubic ice’ [1], is the only crystalline form of
ice formed at ambient pressure beside hexagonal, ice Ih, and its
ordered low-temperature form, ice XI. It is usually obtained in
the form of very small crystallites, e.g. by direct condensation
from water vapour [1, 3–5] or by relaxation of recovered high-
pressure phases of ice upon warming at ambient pressure [6–8].

It is frequently encountered in the temperature range
from about 150 K to well over 200 K at ambient pressure.
Unfortunately, none of the obtained ice Ic forms [4, 5, 9–12]
shows the diffraction pattern one would expect from well-
crystallized simple cubic ice, impeding any routine diffraction
analysis of this material e.g. by means of Rietveld-type
profile analysis of the diffraction data. It should be noted
that the deviations from this idealized structure are different,
depending on the starting material [1–6, 9–13]. Frequently,
‘impurities’ of ice Ih have been suggested as an explanation,
e.g. [4, 5]. Arnold et al [11] realized that the diffraction peaks
of cubic ice were substantially broadened. A closer peak shape
investigation of the main cubic reflections and the appearance
of broad peaks at Bragg angles typical for ice Ih lead to the
assignment of the underlying defects as stacking faults [2].
The skewness of the cubic 111 and 222 reflections (shoulder
at high or low angle, respectively) indicates qualitatively the

presence of so-called deformation faults in contrast to so-called
growth faults [14]. The first diffraction peak at low 2θ angle
cannot be indexed assuming a cubic symmetry and corresponds
to the 100 peak of hexagonal ice Ih. Its presence and the
absence of further hexagonal reflections cannot be explained
by a high concentration of growth faults but with either the
existence of thin hexagonal sequences or by the occurrence of
regular stacking sequences (polytypes) [2]. Elarby-Aouizerat
et al have explained the high-angle shoulder of the 100 peak in
terms of randomly oriented sheets of the ice Ih structure [12].
Crystallites of ice Ic are usually quite small. Considering
isotropic spherical particles, the evaluation of the observed
Bragg peaks according to the Scherrer formula leads to a
diameter of 160 Å for ice Ic particles as from the relaxation
of ice II [2], similar to the value of 130 Å found in [11].
Londono [15], based on high-resolution neutron data [16],
reports 215 Å at 100 K and 384 Å at 176 K.

In a previous paper [17] we presented a way to fit the
diffraction peak profiles with different models of stacking
disorder [18]. This allows us to distinguish different
samples with different histories in terms of their stacking
distributions. An adapted range of sufficiently large unit
cells with different, non-random stacking sequences is created
for each sample and a linear combination of these replicas
is fitted to the measured neutron diffraction data. In this

0953-8984/08/285104+12$30.00 © 2008 IOP Publishing Ltd Printed in the UK1

http://dx.doi.org/10.1088/0953-8984/20/28/285104
mailto:hansen@ill.fr
http://stacks.iop.org/JPhysCM/20/285104


J. Phys.: Condens. Matter 20 (2008) 285104 T C Hansen et al

way a quantitative determination of the total amount of ice
present can be obtained. However, this procedure is extremely
time-consuming, as a very large number of long polytypes
needs to be constructed, their diffraction patterns computed
and combined. A refinement of the weighting factors of
such a linear combination is virtually impossible, let alone
the desirable refinement of other parameters such as lattice
constants, Debye–Waller factors, anisotropic size broadening
and atom positions. Alternatively we created with a Monte
Carlo approach a best fitting polytype with a large number
of layers to represent any form of ice Ic. However, such a
polytype cannot be considered as a unique model to describe
the bulk sample. Again, a refinement of any further parameter
is hardly possible.

Therefore we proceed here with a semi-analytical
approach close to the one used by Berliner and Werner [19],
which described successfully the structure of stacking-faulted
lithium metal. Due to the smallness of ice Ic crystallites,
particle size broadening will need to be included in the
modelling effort. The model will then be applied to diffraction
data on the formation and annealing of ice Ic as described in
the accompanying paper [20].

2. Experimental details

The structural model for ice Ic developed below was applied to
neutron diffraction data of ice Ic obtained from recovered ice
V and IX on the high-flux diffractometer D20 at the high-flux
reactor of the Institut Laue-Langevin. Details of the sample
preparation and data collection are given in the accompanying
paper [20]. Figure 1 gives an appreciation of the changes of
the first diffraction peaks as cubic ice is stepwise warmed up to
a final temperature of 250 K. In agreement with earlier work,
the reflections are substantially broadened at lower temperature
with additional intensity on the shoulders and in between. A
simple particle size broadened cubic ice (space group Fd 3̄m)
cannot describe these intensities. It was suggested earlier [2]
that stacking faults may well account for these additional
intensities. Thus we turn now to possible ways of describing
stacking faults in cubic ice.

3. Structure model

3.1. Scattering of stacking-faulted crystals

Crystals with stacking faults exhibit long-range order in two
dimensions (the basal planes containing the primitive lattice
translation vectors �a and �b) but disorder amongst the basal
planes along the third direction �c. If the crystal is taken to be
of size Na × Nb unit cells in transverse directions and Nc unit
cells along the �c direction, we get for a macroscopic crystal, for
which Na and Nb are large, the following differential scattering
cross section:

dσ( �Q)

d�
=

∣
∣
∣
∣
Na Nbδ(h − h0)δ(k − k0)

×
Nc∑

m3=−Nc

(Nc − |m3|)Ym3(
�Q) e2π im3l

∣
∣
∣
∣
. (1)

The function (1), as developed by Berliner and
Werner [19], corresponds to the result obtained first
by Wilson [21] and discussed by Guinier [22], and it
also covers the ‘Arten-und Lagenfehlordnung’ discussed by
Jagodzinski [23] as well as the ‘variable phase’ disorder
considered by Hendricks and Teller [24].

The average structure factor product Ym3(
�Q) determines

the distribution of scattered intensity as a function of l along the
nodal lines (h0k0). In the equation (2), PAi ·A j (m3) corresponds
to the probability of finding a layer A j separated by a distance
m3 · c from a layer Ai . For N different types of layers from A0

to AN we have:

Ym3(
�Q) = 1

Nc − |m3|
Nc−|m3|∑

n=1

Fn F∗
n+m3

= 1

Nc − |m3|
Nc−|m3|∑

n=1

N∑

i=0

N∑

j=0

PAi ·A j (m3) · FAi F∗
A j

.

(2)

3.2. Stacking sequences—ABC notation

In the following, a fault is defined as a break in the sequence
of alternation of close packed layers. A growth fault in a
cubic close packed lattice (fcc) is the introduction of one
hexagonal sequence: a sequence ABCABCABCAB becomes
ABCABACBACB, the whole layer sequence is mirrored from
the faulty plane onwards. A deformation fault corresponds to
the formation of two adjacent hexagonal packing sequences:
The layer sequence becomes ABCABABCABC. Starting
from a hexagonal close packed lattice (hcp) a growth fault
corresponds to the formation of one cubic packing sequence:
ABABABAB becomes ABCBCBCB (structures of second
type [18]). A deformation fault corresponds to the introduction
of two (structures of third type: ABCACACA) or three cubic
packing sequences (structures of first type: ABCABABA). In
all cases, more complex types of faults can be defined.

Now we need to define the different layers in ice Ic and
ice Ih. In contrast to the simple metal considered by Berliner
and Werner [19] we do not have mono-atomic hexagonal layers
A, B and C. Nevertheless, it is common to define layers A,
B and C in ice Ih and Ic in a way that allows us to apply
the terminology of stacking faults as used for close packed
metals. As one layer we regard the two one-fold oxygen atom
positions, which lie in a lattice of hexagonal metric (subgroup
P3m1 of space group P63/mmc, in which ice Ih crystallizes)
on the same fractional x and y coordinates, but at different z
(±z above and below the layer’s central plane perpendicular to
�c), as shown in figure 2 for the example of the 9R-polytype, a
hypothetical structure between ideal ice Ic and Ih, which will
be introduced in section 3.3 in more detail. The layers are
indicated above the structure plot by the letters B C B C A . . ..
The �c-axis is oriented horizontally. There are three different
pairs (xy) possible: (00), ( 1

3
2
3 ) and ( 2

3
1
3 ). The fractional heights

z in a hypothetical one-layer cell (half the height of the ice
Ih cell in the direction of the �c axis) are—idealized for the
purely cubic case— 1

8 and 7
8 respectively. We have thus three

equivalent layers A, B and C—if only oxygen is regarded.
With the presence of hydrogen (or deuterium), a layer’s content

2
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Figure 1. Logarithmic contour plot of powder diffraction intensity during formation and decomposition of ice Ic from ice V (top) and ice IX
(bottom) precursors. Intensities are encoded from white (lowest) to black (highest). In the 2θ range shown (horizontal axis), one observes at
the end of the run (top) from left to right the Bragg peaks 100, 002 and 101 of ice Ih. The 111 peak of ice Ic in the centre corresponds to the
002 peak of ice Ih. At the right side of each contour plot, the corresponding temperature profile of each diffraction series (time versus
temperature) is plotted at the same timescale (vertical axis). Clearly visible is a sharpening of the 100hex and 111cub (002hex) peak on
temperature increase as well as the appearance of 101hex above about 180 K. The intrinsic resolution of the instrument may be appreciated
from the well-defined reflections of ice Ih finally formed above 240 K.

(and thus its structure factor) depends on its neighbours. There
are four different ‘versions’ of a layer A: CAB, CAC, BAC and

BAB, and in total we have to deal with 12 different layers,
which would result in 122 = 144 correlated interference terms
in the sum of the average structure factor product defined in
equation (2).

The further treatment of a confusingly high number
of terms can be significantly reduced by a different layer
definition: compared to the previous definition, the border of
a layer is only shifted by half a one-layer unit cell. Now the
centre plane of a layer is at z = 0 instead of z = 1

2 , and
the two oxygen positions of a layer are closer to this centre

plane (z = − 1
8 and z = + 1

8 in the ideal cubic case) but
have necessarily different fractional coordinates x and y. We
shall call these layers after the previous definition AB, BC, CA,
BA, AC and CB. The layers correspond, thus, to the interfaces
between the previously presented, ‘conventionally’ defined
layers. There are only six different layers possible, resulting
in 62 = 36 correlated terms in (2). An ideal cubic sequence
(‘3C’) would be [AB·BC·CA·]∞, with [BA·AC·CB·]∞ being
perfectly equivalent. A perfectly hexagonal sequence (‘2H’)
would be [AB·BA·]∞, with [BC · CB·]∞ and [CA·AC·]∞
being perfectly equivalent. Note, that perfectly hexagonal
sequences contain a mirror-plane between two layers.

3
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Figure 2. Structure model of hypothetical hhc-ice (9R); only the
oxygen positions are shown. The �c-axis runs horizontally. The top
row of letters gives the HK notation (see section 3.3) for the
displayed stacking sequences denoting the local character of the
stacking as cubic (‘K’) or hexagonal (‘H’): a K-sequence is
characterized by a local inversion centre relating the neighbouring
puckered layers and sitting in the centre of the hydrogen-bond
joining the layers along the c-axis, an H-sequence is characterized by
a local mirror-plane (NB: both, inversion centre and mirror-plane,
consider only the idealized oxygen positions). The second row of
letters (A, B, C) denotes the three possible locations of the joining
hydrogen-bond connecting the puckered layers along the c-axis. The
bottom row of letters gives the interface layer notation and represents
the possible arrangements of the puckered double layers in terms of
the three possible oxygen positions in the ab-plane. The relation
between the different notations is further elucidated in figure 3.

With this definition, (2) can be rewritten with 36
interference terms in the sum:

Ym3(
�Q) = PAB·AB(m3)FAB F∗

AB + PAB·BC(m3)FAB F∗
BC

+ PAB·CA(m3)FAB F∗
CA + PAB·BA(m3)FAB F∗

BA

+ PAB·CB(m3)FAB F∗
CB + PAB·AC(m3)FAB F∗

AC

+ PBC·AB(m3)FBC F∗
AB + PBC·BC(m3)FBC F∗

BC

+ PBC·CA(m3)FBC F∗
CA + PBC·BA(m3)FBC F∗

BA

+ PBC·CB(m3)FBC F∗
CB + PBC·AC(m3)FBC F∗

AC

+ PCA·AB(m3)FCA F∗
AB + PCA·BC(m3)FCA F∗

BC

+ PCA·CA(m3)FCA F∗
CA + PCA·BA(m3)FCA F∗

BA

+ PCA·CB(m3)FCA F∗
CB + PCA·AC(m3)FCA F∗

AC

+ PBA·AB(m3)FBA F∗
AB + PBA·BC(m3)FBA F∗

BC

+ PBA·CA(m3)FBA F∗
CA + PBA·BA(m3)FBA F∗

BA

+ PBA·CB(m3)FBA F∗
CB + PBA·AC(m3)FBA F∗

AC

+ PAC·AB(m3)FAC F∗
AB + PAC·BC(m3)FAC F∗

BC

+ PAC·CA(m3)FAC F∗
CA + PAC·BA(m3)FAC F∗

BA

+ PAC·CB(m3)FAC F∗
CB + PAC·AC(m3)FAC F∗

AC

+ PCB·AB(m3)FCB F∗
AB + PCB·BC(m3)FCB F∗

BC

+ PCB·CA(m3)FCB F∗
CA + PCB·BA(m3)FCB F∗

BA

+ PCB·CB(m3)FCB F∗
CB + PCB·AC(m3)FCB F∗

AC. (3)

Here, PAB·AB(m3) is the probability of finding two AB-
layers separated by a distance m3c, PAB·BC(m3) the probability
of finding a layer BC separated by m3c from a layer AB,
and so on. In order to specify the arrangement of layers,
we only require four probabilities, PAB·AB(m3), PAB·BA(m3),
PAB·BC(m3) and PAB·CA(m3). As the identification of a given

layer in a macroscopic sample as A, B or C is purely arbitrary,
the pairs AB–AB, BC–BC, CA–CA, AC–AC, CB–CB and
BA–BA are equally probable, thus, the total probability of
finding two identical double layers out of six at a distance
of m3c can be expressed by PAB·AB(m3). Equally, the six
pairs AB–BA, BC–CB, CA–AC, AC–CA, CB–BC and BA–
AB are equivalent and thus their probability is PAB·BA(m3).
For PAB·AB(m3) and PAB·BA(m3) inversion of the sign of
m3 results in the same probability. Note, that only these
two probabilities have values different from zero in a perfect
hexagonal stacking sequence, which is the only one containing
mirror planes perpendicular to �c. This is not the case for
the probabilities PAB·BC(m3) and PAB·CA(m3), corresponding
again to the probability of finding one of six pairs at a
distance of m3c: here we have the relation PAB·CA(m3) =
PAB·BC(−m3). These probabilities become non-zero only if
cubic stacking sequences occur. The probability of having
one of the remaining 12 possible pairs occurring is simply
PAB·AC(m3) = 1− PAB·AB(m3)− PAB·BA(m3)− PAB·BC(m3)−
PAB·CA(m3). Note, that in the case of a simple close packed
metal, as described by Berliner and Werner in [19], not only
does the equation equivalent to (3) contain nine terms, but also
the probabilities condense down to only one probability p(m3)

that two layers separated by a distance m3c are identical instead
of the four different probabilities presented above. Thus,
equation (3) can be rewritten simplified but will remain far
more complex than for a close packed metal:

Ym3(
�Q) = PAB·AB(m3)

6
FAB F∗

AB + PAB·BC(m3)

6
FAB F∗

BC

+ PAB·CA(m3)

6
FAB F∗

CA + PAB·BA(m3)

6
FAB F∗

BA

+ PAB·AC(m3)

12
FAB F∗

CB + PAB·AC(m3)

12
FAB F∗

AC

+ PAB·CA(m3)

6
FBC F∗

AB + PAB·AB(m3)

6
FBC F∗

BC

+ PAB·BC(m3)

6
FBC F∗

CA + PAB·AC(m3)

12
FBC F∗

BA

+ PAB·BA(m3)

6
FBC F∗

CB + PAB·AC(m3)

12
FBC F∗

AC

+ PAB·BC(m3)

6
FCA F∗

AB + PAB·CA(m3)

6
FCA F∗

BC

+ PAB·AB(m3)

6
FCA F∗

CA + PAB·AC(m3)

12
FCA F∗

BA

+ PAB·AC(m3)

12
FCA F∗

CB + PAB·BA(m3)

6
FCA F∗

AC

+ PAB·BA(m3)

6
FBA F∗

AB + PAB·AC(m3)

12
FBA F∗

BC

+ PAB·AC(m3)

12
FBA F∗

CA + PAB·AB(m3)

6
FBA F∗

BA

+ PAB·CA(m3)

6
FBA F∗

CB + PAB·BC(m3)

6
FBA F∗

AC

+ PAB·AC(m3)

12
FAC F∗

AB + PAB·AC(m3)

12
FAC F∗

BC

+ PAB·BA(m3)

6
FAC F∗

CA + PAB·CA(m3)

6
FAC F∗

BA

+ PAB·BC(m3)

6
FAC F∗

CB + PAB·AB(m3)

6
FAC F∗

AC
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+ PAB·AC(m3)

12
FCB F∗

AB + PAB·BA(m3)

6
FCB F∗

BC

+ PAB·AC(m3)

12
FCB F∗

CA + PAB·BC(m3)

6
FCB F∗

BA

+ PAB·AB(m3)

6
FCB F∗

CB + PAB·CA(m3)

6
FCB F∗

AC (4)

Ym3(
�Q) = PAB·AB(m3)

6

(

FAB F∗
AB + FBC F∗

BC + FCA F∗
CA

+ FBA F∗
BA + FAC F∗

AC + FCB F∗
CB

) + PAB·BC(m3)

6
× (

FAB F∗
BC + FBC F∗

CA + FCA F∗
AB + FBA F∗

AC

+ FAC F∗
CB + FCB F∗

BA

) + PAB·CA(m3)

6
×(

FAB F∗
CA + FBC F∗

AB + FCA F∗
BC + FBA F∗

CB

+ FAC F∗
BA + FCB F∗

AC

) + PAB·BA(m3)

6
× (

FAB F∗
BA + FBC F∗

CB + FCA F∗
AC

+ FBA F∗
AB + FAC F∗

CA + FCB F∗
BC

)

+ {

1 − PAB·AB(m3) − PAB·BA(m3) − PAB·BC(m3)

− PAB·CA(m3)
}

1
12

× (

FAB F∗
CB + FAB F∗

AC + FBC F∗
BA + FBC F∗

AC

+ FCA F∗
BA + FCA F∗

CB + FBA F∗
BC + FBA F∗

CA

+ FAC F∗
AB + FAC F∗

BC + FCB F∗
AB + FCB F∗

CA

)

. (5)

For our purposes in this paper, we assume that the
displacements of the lattice nodes due to the presence of
stacking faults are negligible. We consider only two fractional
position parameters: d , which is the deflection of the
oxygen position out of the central plane of an interface layer
in fractions of c, 1

8 in the case of ideal cubic ice, and
g, which is the relative position of one of the two half-
occupied hydrogen positions on the connection line between
two oxygen positions, about 0.36 in the case of hexagonal ice.
This one parameter does not take into account properly the
difference between the two different crystallographic positions
of hydrogen in hexagonal ice or the fact that not all four
oxygen–oxygen distances are the same, but it is a sufficiently
precise approximation for the later refinement of medium
resolution powder diffraction patterns. With this we have
the following structure factors for the 10-atomic interface
layers (two oxygen positions and eight half-occupied hydrogen
positions):

FAB = 1
2 ((((e

− 2
3 i((g−1)h+2(g−1)k+3d(1−2g)l)π

+ e− 2
3 i((g−1)h−g+k+3d(1−2g)l)π

+ e
2
3 i((g+2)h−(g+2)k+3d(1−2g)l)π

+ e
2
3 i((g+2)h+2(g+2)k+3d(1−2g)l)π

+ e
2
3 i(2(g−1)h+(g−1)k+3d(2g−1)l)π

+ e− 2
3 i(2(g+2)h+(g+2)k+3d(2g−1)l)π

+ e
2
3i(2h+k−3(2gd−d+g)l)π

+ e
2
3 i(h+2k+3(2gd−d+g)l)π

))bH + 2((e
2
3 i(h+2k−3dl)π

+ e
2
3 i(2h+k+3dl)π

))bO))

FBC = 1
2 ((((e

−2i(2gd−d+g)lπ

+ e− 2
3 i((g−2)h−(g−2)k+3d(1−2g)l)π

+ e− 2
3 i((g−2)h+2(g−2)k+3d(1−2g)l)π

+ e
2
3 i(2(g−2)h+(g−2)k+3d(2g−1)l)π + e

2
3 i(2h+k+3(2gd−d+g)l)π

+ e
2
3 i(3dl+g(h−k−6dl))π

+ e
2
3 i(3dl+g(h+2k−6dl))π

+ e− 2
3 i(g(2h+k+6dl)−3dl)π

))bH

+ 2((e2idlπ + e
2
3 i(2h+k−3dl)π

))bO))

FCA = 1
2 e−2idlπ ((((e2i(2d+1)glπ + e− 2

3 ig(h+2k−6dl)π

+ e
2
3 ig(−h+k+6dl)π + e

2
3 ig(2h+k+6dl)π

+ e− 2
3 i(−(g+1)h+(g+1)k+6d(g−1)l)π

+ e− 2
3 i(2(g+1)h+(g+1)k+6d(g−1)l)π

+ e
2
3 i(gh+h+2gk+2k+6dl−6dgl)π

+ e
2
3 i(h+2k−3(2d(g−1)+g)l)π

))bH

+2((1 + e
2
3 i(h+2k+6dl)π

))bO))

FAC = 1
2 ((((e−2i(2gd−d+g)lπ

+ e− 2
3 i(2(g+1)h+gk+k+3dl−6dgl)π

+ e
2
3 i(gh+h−gk−k−3dl+6dgl)π

+ e
2
3 i(gh+h+2gk+2k−3dl+6dgl)π

+ e
2
3 i(h+2k+3(2gd−d+g)l)π

+ e
2
3 i(3dl+g(2h+k−6dl))π

+ e− 2
3 i(g(h−k+6dl)−3dl)π

+ e− 2
3 i(g(h+2k+6dl)−3dl)π

))bH

+ 2((e2idlπ + e
2
3 i(h+2k−3dl)π

))bO))

FCB = 1
2 e−2idlπ ((((e2i(2d+1)glπ + e− 2

3 ig(2h+k−6dl)π

+ e
2
3 ig(h−k+6dl)π + e

2
3 ig(h+2k+6dl)π

+ e
2
3 i(2(g−2)h+(g−2)k−6d(g−1)l)π

+ e− 2
3 i((g−2)h−(g−2)k+6d(g−1)l)π

+ e− 2
3 i((g−2)h+2(g−2)k+6d(g−1)l)π

+ e
2
3 i(2h+k−3(2d(g−1)+g)l)π

))bH

+ 2((1 + e
2
3 i(2h+k+6dl)π

))bO))

FBA = 1
2 ((((e

2
3 i(2(g−1)h+(g−1)k+3d(1−2g)l)π

+ e− 2
3 i(2(g+2)h+(g+2)k+3d(1−2g)l)π

+ e− 2
3 i((g−1)h+2(g−1)k+3d(2g−1)l)π

+ e− 2
3 i((g−1)h−gk+k+3d(2g−1)l)π

+ e
2
3 i((g+2)h−(g+2)k+3d(2g−1)l)π

+ e
2
3 i((g+2)h+2(g+2)k+3d(2g−1)l)π

5



J. Phys.: Condens. Matter 20 (2008) 285104 T C Hansen et al

+ e
2
3 i(h+2k−3(2gd−d+g)l)π

+ e
2
3 i(2h+k+3(2gd−d+g)l)π

))bH

+ 2((e
2
3 i(2h+k−3dl)π + e

2
3 i(h+2k+3dl)π

))bO)). (6)

Here, in the case of neutron scattering, bO and bH

are the nuclear scattering lengths of oxygen and hydrogen
(or deuterium), respectively, which are independent of the
scattering vector �Q. For x-ray diffraction, bO and bH would
have to be replaced by the wavevector dependent atomic form
factor f (Q).

3.3. Polytypes—HK notation

The calculation of PAB·AB(m3), PAB·BA(m3), PAB·BC(m3) and
PAB·CA(m3) requires a specification of the underlying stacking
sequence. As we had reasons to suspect in [17] that ice Ic,
formed from ice IX, is close to a 9R-lattice (see figure 2),
of which the prototype is samarium metal [25, 26], we
shall elaborate this procedure here on this example. The
9R designation [27] specifies a nine-layer crystal with a
rhombohedral space group. The stacking sequence for this
structure can be represented by the A, B and C layer notation
or by denoting each layer as H (hexagonal) or K (cubic)
depending on its local environment [23]. Note, that sometimes
the symbols h (hexagonal) and c (cubic) are used instead, so
in [17] a layer that has two different layers adjacent on either
side is denoted as a K layer, while a layer that has similar
layers adjacent on either side is denoted as an H layer. The
description of the 9R structure requires an interaction range of
s = 4, e.g. no interaction between every fourth layer. Four
independent probabilities α, β , γ and δ are needed for this
interaction range [23], which represents the probability that
two adjacent layers of type HH, HK, KH or KK respectively,
are followed by a K layer. All polytypes with S < 4 can
be defined with a set of these probabilities. The perfect 9R
sequence corresponds to α = 1, β = 0, γ = 0 and δ = 0,
a perfect cubic lattice would have α = 1, β = 1, γ = 1 and
δ = 1, a hexagonal one α = 0, β = 0, γ = 0 and δ = 0.
Isolated deformation faults in a cubic lattice correspond to the
introduction of two adjacent H layers, while an isolated twin
(or growth) fault produces a single H layer amongst a sequence
of K layers. If we only consider these two faults at a probability
of Pdeformation and Ptwin in a cubic lattice, we have [19]:

α = 1, β = 1, γ = Ptwin

Pdeformation + Ptwin

and δ = 1 − (Pdeformation + Ptwin).

(7)

We can now simulate faulted crystals as special cases of
an s = 4 lattice. It is straightforward to ‘grow’ a crystal in the
computer using the four probabilities α, β , γ and δ as defined
above. However, we must introduce the concept of crystal
‘seeds’. The beginning sequences of a computer simulation
must be consistent with the choices of α, β , γ and δ. This
self-consistent selection of seeds is obtained by consideration
of the pair-occurrence probabilities wHH, wHK, wKH and wKK

Figure 3. An example of a computer-grown stacking sequence
resulting from a set of probabilities α = 63%, β = 39%, γ = 35%
and δ = 78% and the output 0 < r < 1 of a random number
generator. The lowest row schematizes the probability tests, the
following one the resulting stacking rules in HK notation, followed
by the consequent layers in ABC notation and, in the top row, the
interface layer notation introduced in section 3.2.

for HH, HK, KH and KK pairs, respectively [19]:

wHK = α(1 − δ)

(1 − γ )(1 − δ) + 2α(1 − δ) + αβ

wKH = wHK

wHH = wHK(1 − γ )

wKK = βwHK

1 − δ
.

(8)

Calculation of PAB·AB(m3), PAB·BA(m3), PAB·BC(m3)

and PAB·CA(m3) is accomplished by growth of an Nc-layer
crystallite N times in the computer using the random number
generator. Growth of each crystallite begins with the first
two layers as an A and a B layer. The following two layers
correspond to one of the four possible seeds: HH corresponds
to ABAB, HK to ABAC, KH to ABCB and KK to ABCA. The
type of the next layer (H or K) is determined by comparing the
random number generator output to the appropriate probability
α, β , γ or δ. If the type is H, the next layer m3 + 1, out of A,
B or C, will be identical to the layer m3 − 1, otherwise it will
be different from m3 and m3 − 1. The computer has thus to
keep track of the layers m3 − 1 and m3 and the layer type of
the layers m3 − 2 and m3 − 1. This process is repeated until
the Nc-layer crystallite is completed.

The growth of a crystal shall be shown on an example,
which is demonstrated in figure 3. Let r be a random number
in the range from 0 to 1. We assume α = 63%, β = 39%,
γ = 35% and δ = 78%, which is actually the real situation
of figure 5, at the end of the 175 K stage of ice Ic from ice V.
From this we get with (8) wHH = 21%. The random number
generator delivers r = 39% > wHH = 21%, which means
that the first two stacking rules to apply are not HH. Again,
from (8), we have wKK = 38% or wKK/(1 − wKK) = 48%.
This time, the random number generator delivers r = 45% <

wKK/(1 − wKK) = 48%, which means that the first two
stacking rules to apply are KK. The third and fourth layer of
the crystal are thus both packed obeying the cubic stacking
rule: the new layer to add is not equal to the previous two. For
the third layer, the previous layers being A and B, this results
in C, for the fourth layer, the previous layers being B and C,
this results in A. The sequence at this stage is ABCA so far.
To find out, which stacking rule has to be applied to determine

6
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the following layer, we note that the previously applied rules
were K and K. Thus, we have to check the probability δ that
two cubic stacking rules are followed by a cubic one. The
random number generator delivers r = 66% < δ = 78%,
which means that again a cubic stacking rule has to be applied.
The fifth layer, the previous ones being C and A thus becomes
B, the crystal can be described as ABCAB so far. For the sixth
layer we get r = 2% < δ = 78%, again obeying the rule
K, thus giving C and resulting in ABCABC. For the seventh
layer we get r = 86% > δ = 78%. This time a hexagonal
stacking rule H follows the previous two rules K and K, the
consequent layer has to be identical to the one preceding the
previous layer and with the two preceding layers being B and C
this results in a layer B. The whole stack becomes ABCABCB.
The two previously applied stacking rules being K and H we
have now to check the probability γ that a sequence of rules
KH is followed by a rule K. The random number generator
delivers r = 37% > γ = 35%, which means that a hexagonal
stacking rule H has to be applied to generate the eighth layer.
With the preceding layers CB this new layer becomes C and
the whole stack ABCABCBC. With the two preceding stacking
rules HH, the probability α that HH is followed by K has to be
checked now. With r = 12% < α = 63% we have to apply
the rule K and the ninth layer becomes different from the two
preceding ones, BC, so is A. The whole stack now is described
by ABCABCBCA. With the two preceding stacking rules HK,
the probability β that HK is followed by K has to be checked
next. With r = 91% > β = 39% we have to apply the rule H
and the tenth layer becomes, with preceding layers CA, C, so
the whole stack is thus ABCABCBCAC. The two previously
applied stacking rules being KH we have now to check the
probability γ again and with r = 79% > γ = 35% we have
to apply H and generate a layer A. With the two preceding
stacking rules HH, the probability α has to be checked now.
With r = 26% < α = 63% we have to apply K and the twelfth
layer becomes different from the two preceding ones, CA, so
B. The whole stack is now ABCABCBCACAB. The stacking
rules applied so far have been KKKKHHKHHK, which could
be considered as two deformation faults in an otherwise purely
cubic sequence. In terms of interface layers the same stack can
be written as ABBCCAABBCCBBCCAACCAAB.

The quantity PAB·AB(m3) is determined by analysing each
one of the N crystallites: we compare layer pairs at a distance
of m3 and get the probability that these pairs are identical.
For PAB·BA(m3) the approach is similar, only that we do look
out for pairs which contain identical layers but which are
inverted. PAB·BC(m3) and PAB·CA(m3) are probabilities that
these pairs contain only one identical layer either as far from
each other or as close as possible. For each set of probabilities
α, β , γ and δ we thus get a characteristic set of PAB·AB(m3),
PAB·BA(m3), PAB·BC(m3) and PAB·CA(m3). We need to grow a
certain number N of crystallites in order that these probabilities
converge (except for pure polytypes like the perfectly cubic,
the perfectly hexagonal and the 9R lattice). For the computing-
intense refinements we have chosen N = 500 in contrast
to Berliner and Werner [19] who have chosen N = 10 000.
But in contrast to them, we get a better ‘counting statistics’
on the probabilities as we evaluate all distances m3 occurring

Figure 4. Example of a computer-grown stacking sequence from
figure 3. The deduction of each of the four independent pair
correlation probabilities for m3 = 0–4 is shown, arrows indicate the
contributing pairs, probabilities which have general values for all
stacking sequences are printed in bold.

in a crystallite: in a crystallite with Nc = 100 we have, for
example, Nc − m3 = 98 correlating pairs with m3 = 2 which
we use to evaluate the probabilities PAB·AB(m3), PAB·BA(m3),
PAB·BC(m3) and PAB·CA(m3), while Berliner and Werner only
compare the first layer with the layer m3 + 1 to determine
the layer–layer correlation probabilities. This procedure gives
a sufficient convergence for smaller values of m3 and bad
convergence for values of m3 approaching Nc, but terms with
a high value of m3 have a very small influence on the result
anyway, as seen from equation (1).

The counting of pair correlation probabilities shall be
shown on the same example: PAB·AB(0) is always one
(identity), PAB·AB(1) is always zero (the following interface
layer must start with the same layer as the previous one ends),
PAB·AB(2) is 2/9 in our example (from nine possible pairs
separated by m3 = 2 layers we find two identical ones, BC-
BC and CA-CA), PAB·BA(0) is always zero, PAB·BA(1) is 4/10
in our example (from ten possible pairs separated by m3 = 1
layers—thus direct neighbours—we find inverted pairs four
times, BC–CB, CB–BC, CA–AC and AC–CA), PAB·BA(2) is
always zero, because inverted layer pairs separated by two
layers would imply a sandwiched interface pair in between
which is type AA, BB or CC, which is not possible. Further
counting of pair correlation probabilities is demonstrated in
figure 4.

Some generalities are noteworthy: PAB·AB(0) = 1,
PAB·BA(0) = PAB·BC(0) = PAB·CA(0) = PAB·AB(1) =
PAB·CA(1) = PAB·BA(2) = PAB·BC(2) = 0 and PAB·BA(1) +
PAB·BC(1) = 1. All four probabilities PAB·AB(m3),

7
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Figure 5. Diffraction pattern and fit of ice Ic from ice V at the end of the 175 K stage after 13.3 h (top) and pair correlation probabilities in
ice Ic at these conditions (bottom).

PAB·BA(m3), PAB·BC(m3) and PAB·CA(m3) approach 1/6 for
large values of m3 (if any stacking fault occurs, e.g. if α, β ,
γ and δ are not all equal to one or zero).

3.4. Algorithm for model refinement

The computing of powder patterns of stacking-faulted ice Ic/Ih
has been set up in the commercial software Igor Pro [28]. The
routine computing of the pair correlation probabilities has been
set up partially using a so-called XOP [29], an external module
entirely programmed in C, which accelerates this part by a
factor of 50. The routine builds N times a stacking sequence
of Nc layers based upon the set of probabilities α, β , γ or
δ and starting from the self-consistent set of ‘seeds’. The
XOP extracts from these sequences PAB·AB(m3), PAB·BA(m3),
PAB·BC(m3) and PAB·CA(m3).

Another XOP computes the scattered intensity as a
function of l (about 10 times faster than an Igor function),
as described above. The scattering needs to be computed for
every streak hk (an adequate limited number of streaks and
their multiplicity have been set up beforehand, depending on
wavelength and 2θ range) for a series of l with a sufficiently
small step width 
l. If 
l is too large, intensities for very
sharp peaks, e.g. for large values of Nc and a regular polytype
(α, β , γ or δ approaching zero or one), become overestimated

or the peak centre may be missed. Empirically, a step width
depending on Nc has been chosen: 
l = 1/(8Nc(h + k + 1)).
The computing time depends to a great extent on Nc, and
increases with about N2

c for small Nc and N3
c for large Nc.

In the refinement it has been constrained to stay below 500.
Higher values of Nc would be indistinguishable anyway due to
the limited resolution of the diffractometer used.

The scattered intensity as a function of l is then projected
to the 2θ axis of a Debye–Scherrer diffractometer. At this
stage we have the lattice constants, the wavelength and θ zero-
shift as optionally refinable parameters. The resulting intensity
is convoluted by a Lorentzian function to account for size
broadening perpendicular to �c (the size broadening parallel to �c
is already handled by the parameter Nc, the number of stacked
layers). For anisotropic size broadening it is possible to use
a very general phenomenological model, using the Scherrer
formula, written as a linear combination of spherical harmonics
(SPH).

βhkl = λ

Dhkl cos θ
= λ

cos θ

∑

lmp

almp ylmp(�hkl ,hkl ). (9)

The values of ylmp are given by Järvinen [30]. These
normalized symmetrized real spherical harmonics up to the
second order corresponding to the Laue class 3̄m of ice Ic/Ih
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polytypes are:
y00 = 1

y20 = 3 cos2 � − 1

2
.

(10)

We have cos �hkl = √
l2/(c[l2/c2 + 4(h2 + kh + k2)/

3a2]1/2) and the normalization condition that in direction �c
(� = 0) the particle size is infinite (as already handled by
Nc), which results in:

βhkl = λ

cos θ

(

a00 + a20
3 cos2 �hkl − 1

2

)

β00l = λ

cos θ

(

a00 + a20
3 cos2 0 − 1

2

)

= 0

a00 + a20
3 − 1

2
= 0

a00 = −a20

βhkl = λ

cos θ

(

a00

(

1 − 3 cos 2�hkl − 1

2

))

βhkl = λ

cos θ

(

a00

(
2 − 3 cos 2�hkl − 1

2

))

βhkl = λ

cos θ
a00

(
3 − 3 cos2 �hkl

2

)

= λ

cos θ
a00

(
6c2(h2 + kh + k2)

4(h2 + kh + k2)c2 + 3a2l2

)

βhk0 = λ

cos θ
a00

3

2
.

(11)

From this it follows that, for the characteristic size in the
basal plane, Dhk0 = 2/(3a00).

The intensity modulation due to thermal motion is taken
into account by a single isotropic overall Debye–Waller factor,
which appears to be sufficient to fit the available powder
diffraction data, which does not cover a very large Q-range.

Intensity is further modulated by the Lorentz factor L
which has two components: the ‘sample factor’ accounts
for the fraction of material in reflection orientation and
is proportional to (sin θ)−1 [31] and a geometrical factor
accounting for the fact that not all the intensity in a diffraction
cone is collected on the used diffractometer of Debye–Scherrer
type:

L = 1

sin θ

arcsin hd/dd

sin 2θ

π
. (12)

Here hd/dd is in a first approximation the ratio of detector
height hd to the sample–detector distance dd. As the vertical
focusing of the monochromator and the sample height are
further non-negligible contributions, the value h/d has been
refined from a reference powder pattern of hexagonal ice (at
the end of the temperature program) to hd/dd ≈ 0.015, but left
fixed for further refinements as it shows a strong correlation
with the scale factor. Compared to the closely related usual
Lorentz factor definition, L = (sin θ sin 2θ)−1 [31], the
computed pattern corresponds better to the observation.

Finally, the result, scattering intensity as a function of
2θ , is convoluted depending on the diffraction angle 2θ with

the experimental peak shape as a function of 2θ . These peak
shapes have been extracted from a powder diffraction pattern
of Na2Ca3Al2F14 [32] recorded under exactly the same setting
in terms of instrument resolution and wavelength. This powder
has proven to be extremely well crystallized, therefore, size
and strain broadening effects can be neglected. The peak
shape can be assumed to be determined exclusively from the
diffractometer. Additionally, the cubic compound shows a
high number of well-separated peaks over the whole range
of 2θ . About ten peaks have been extracted manually, the
shapes normalized to unity intensity. The shape at any 2θ is
interpolated from the adjacent peak shapes.

4. Results

The model developed here can now be applied to measured
diffraction data in a profile refinement procedure. Indepen-
dently and simultaneously refined parameters are the scale fac-
tor of ice Ic, four factors of a polynomial expression describ-
ing the background, two lattice parameters a and c, the relative
position of oxygen d in the direction of the fractional coordi-
nate z and the relative position g of hydrogen on the connection
line between neighbouring oxygen positions as used in the def-
inition of structure factors in equation (6), an overall Debye–
Waller factor for oxygen and hydrogen, the number of layers
Nc, the four probabilities α, β , γ and δ and the parameter a00

after equation (11) inversely proportional to the size of the par-
ticles in the plane perpendicular to the stacking direction �c. In
the region of coexistence of ice Ic with a precursor phase, up
to eight further refinable parameters add to these 15 parame-
ters. The refined data range from 2θ = 20◦ to 2θ = 145◦ and
have been recorded at a wavelength of λ = 2.4091 Å. A first
set of starting values for all parameters was obtained by trial,
further on, in the sequential refinement of a series of evolving
patterns in time and with temperature; the parameter set of the
preceding or the following pattern in the series was taken there-
fore. There is some noteworthy correlation between scale and
the Debye–Waller factor (0.7), the cubic and the square back-
ground term (0.8), Nc and the c-axis (0.7), δ and c (0.4), δ and
Nc (0.6), α and β (0.5), α and γ (0.5), β and γ (0.5), and γ

and δ (0.3). Nevertheless, the iterative refinement converges
always and no parameter needs to be kept fixed. The curve fit-
ting algorithm we used is the Levenberg–Marquardt nonlinear
least-squares optimization algorithm [33] implemented in Igor
Pro. The computing time for one full iterative refinement in
Igor Pro ranges from about 6 min for Nc = 70 to about 80 min
for Nc = 500 on an Apple MacBook Pro with 2.33 GHz Intel
Core 2 Duo processor with 3 GB of memory. The reason, why
the N2

c to N3
c dependence of the computing time for a single

model becomes a roughly linear dependence on Nc is due to
the fact that the refinement converges faster for higher Nc.

The model was used successfully to fit all data sets from
the formation of ice Ic up to the onset of transformation of
ice Ic into ice Ih at about 185 K. For ice Ic at 170 K we
show the quality of the fit and the pair correlation probabilities
PAB·AB(m3), PAB·BA(m3), PAB·BC(m3) and PAB·CA(m3) in
figures 5 and 6. The clear differences in the diffraction patterns
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Figure 6. Diffraction pattern and fit of ice Ic from ice IX at the end of the 175 K stage after 13.3 h (top) and pair correlation probabilities in ice
Ic at these conditions (bottom). A small contamination of ice Ih is visible and was present and stable from the beginning of the experiment.

of ice Ic from ice V and ice IX translate into differences in the
stacking sequences.

Ice Ic from ice V has probabilities β and γ slightly
below 40%, whereas δ is around 80% (thus the probability to
have clusters of three cubic sequences or more is high) and
α around 65% (thus two hexagonal sequences are normally
enclosed in cubic sequences—which is the definition of a
deformation fault in cubic packing). Cubic sequences are
present in ice Ic from ice V to about 60%. The fact that pairs
of two hexagonal sequences (wHH) appear as often as each
one of both probabilities to have pairs of cubic and hexagonal
stacking sequences in either order (wHK and wKH) to about
20% means again that hexagonal sequences always appear in
pairs (deformation faults), nearly never as a single hexagonal
sequence (growth faults) and nearly never in clusters of more
than two hexagonal sequences.

Ice Ic looks rather different from ice IX: γ is close to zero,
which means that single hexagonal sequences are forbidden, α

is much lower and reaches about 40% at 175 K. δ is, as in the
case of ice Ic from ice V, higher than α, whereas β decreases
over time to about 40% at 175 K. The concentration of cubic
sequences is about 42% at 175 K. This form of ice is slightly
less rich in interfaces between the cubic and the hexagonal
stacking rule than ice Ic from ice V, with wHK of about 15%.

It is interesting to note that the crystallite size parallel to
�c, D00l = Nc · c, and perpendicular to �c, Dhk0 = 2/3 · a00,
following equations (9) and (11) is basically the same. Crystals
are thus isometric, neither platelet, nor needle shaped. The
temperature dependency of the particle size and changes in
the stacking sequences will be discussed in the accompanying
paper [20]. Here we only demonstrate that the model provides
a very good fit to the diffraction data and allows for the first
time a full-pattern least-squares analysis of the diffraction data
of ice Ic. It should be noted, however, that the possibility to
follow the temperature-induced changes in the defect structure
by fitting an appropriate set of parameters provides additional
support for the sound physical basis of the model.

5. Discussion

The stacking-fault model described in section 3 allows a very
satisfactory profile fitting of all powder diffraction data of ice Ic
obtained from ice V as well as ice IX for the whole temperature
range investigated [20]. As expected from the different
appearance of the diffraction pattern, the stacking sequences
are found to be significantly different for the two cubic ices
of different origin. For the first time, these differences
can now be quantified in terms of probabilities of stacking
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polytypes and (anisotropic) crystallite size and followed as
temperature-induced changes take place. This seems far more
satisfactory than earlier attempts to fit with ad hoc assumptions
the complex powder pattern of ice Ic. One such assumption
was the presence of small amounts of low-density amorphous
ice suggested by Elarby-Aouizerat et al [12] in an attempt to
describe the powder pattern of ice Ic precipitated from a glassy
LiCl · H2O matrix; the excess intensity found in their peak
fitting approach centred at Q ≈ 1.7 Å

−1
(i.e. between the cubic

111 and the hexagonal 101 peak) turned out to be perfectly well
described by our stacking-fault model. Elarby-Aouizerat et al
[12] also suggested the existence of a Warren-type profile of the
leading hexagonal 100 reflection originating in the presence of
laterally randomly oriented sheets. Again, our anisotropically
broadened one-dimensional stacking-fault model describes this
part of the powder pattern fully satisfactorily without such a
complication. Of course, we cannot exclude a small amount
of lateral disorder in the stacking sequences, but given the
rather directional H-bond forces between the sheets we do not
expect large lateral displacements in crystalline ice. Thus we
are convinced that our model is not only simpler but also builds
on more realistic physical assumptions.

6. Summary and outlook

A structural model for the description of ice Ic is proposed
and applied to neutron diffraction data. Ice Ic contains a
considerable level of hexagonal stacking sequences, preferably
occurring in pairs of two subsequent hexagonal stacking
sequences (deformation faults, as suggested by Kuhs et al [2]).
The crystallites of ice Ic obtained from relaxation of ice V and
ice IX are small, containing around 130 stacking sequences
(about 500 Å in �c-direction) at 175 K. After all, this so-called
‘cubic ice’ is not really cubic, but trigonal at most (space group
P3m1).

The presented computing method is revealed to be
satisfactory for a quantitative description of ice Ic from powder
diffraction data. It allowed us, for the first time, to fit the
observed powder diffraction patterns of ice Ic to a structural
model. The main result thus is that indeed ice Ic is a regular
stacking-faulted phase with small crystallites, and the model
describes fully the nature of this phase, which had remained
obscure since its first discovery more than 64 years ago [1].

Still, a word of caution is in order: as is general in
a multi-dimensional parameter space, a least-squares method
does not guarantee that we can obtain the best possible model,
i.e. the correct set of probabilities α, β , γ and δ. An
optimization method, such as simulated annealing should be
invoked in order to lead to the best solution, which can further
be refined with the least-squares method. Nevertheless, the
smoothness of the least-squares convergence and the only
moderate correlations amongst the stacking-fault parameters
give us confidence in the obtained results.

Instead of a sharply peaked distribution of the stacking-
faulted phase to be described with one set of α, β , γ and
δ, Nc and other parameters, a broader and even skewed
distribution should be considered. It has to be checked whether
there is a solution to describe such a distribution without the

cumbersome computing for many different phases which have
to be combined for describing such a distribution.

The computing has been performed inside the commer-
cially available Igor Pro software [28], invoking fast, so-called
XOPs [29] (externally subroutines programmed entirely in C).
The code should be translated totally to a programming lan-
guage like C in order to become more efficient. Further on,
the code should be generalized to be able to handle simi-
lar problems of one-dimensional stacking disorder in other
crystalline materials and thus become possibly an alterna-
tive to DIFFaX [34] (which does not permit refinements) and
FAULTS [35] (based on DIFFaX but permitting refinement of
parameters).
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Berechnung des Fehlordnungsgrades aus den
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